

DNN-003-020406

Seat No.

M. Sc. (Physics) (Sem. IV) (CBCS) Examination

May / June - 2015

Physics ET - 9: Electronic Communication

Faculty Code: 003 Subject Code: 020406

Time : $2\frac{1}{2}$ Hours]

[Total Marks: 70

Instructions: (1) All questions are compulsory.

(2) Number on right margin indicates marks.

1. Attempt any Seven:

(14)

- (a) What are different types of Digital Modulation?
- (b) Contrast the advantages and disadvantages of fiber-optic cables and metallic cables.
- (c) What are the normal modes of radio wave propagation?
- (d) Define: Shannon's limit for information capacity
- (e) What are the primary and secondary transmission line constants?
- (f) Define look angels for satellite
- (g) Determine the maximum usable frequency (MUF) for ionospheric radio wave communication if a critical frequency is 20 MHz and an angle of incidence 35⁰
- (h) Define reflection coefficient of transmission line.
- (i) Draw the block diagram of fiber optic communication system
- (j) What is the dominant mode in wave guide? What is the cut off wave length in rectangular wave guide for the dominant mode?

2. Attempt any TWO:

(a) What is ionosphere in earth upper atmosphere? Discuss the role of ionosphere in HF radio wave communication hence explain the terms: Plasma and critical frequencies, virtual height and skip distance. What is secant law? (07)

- (b) Write a note on "duct" and "tropo-scatter" modes of propagation (07)
- (c) Derive expression for "Transmission path loss" incurred by an electromagnetic wave as it propagates through free-space. For a carrier frequency of 6000 MHz and a distance of 50 km, calculate the transmission path loss in dB (07)
- 3. (a) What is frequency shift keying? Discuss working of FSK-transmitter and receiver with neat diagrams. (07)
 - (b) Explain the working of binary phase shift keying (BPSK) modulator and receiver with truth table, phasor and constellation diagrams. (07)

OR

- 3. (a) Derive expression for input impedances of open (Z_{oc}) and short-circuited (Z_{sc}) transmission lines. Show that $Z_0 = \sqrt{Z_{oc}Z_{sc}}$, where Z_0 is the characteristic impedance of any uniform and symmetrical transmission line. Explain the variation of Z_{oc} and Z_{sc} as a function of line length. (07)
- (b) Draw the internal layout of a communication satellite and explain function of each section in detail including uplink & down link models and transponder.
 (07)

4. Attempt any TWO:

- (a) Show that how a TE₁₀ wave can be formed by superposition of two TEM waves. Prove the relation: $\frac{1}{\lambda_g^2} = \frac{1}{\lambda^2} - \frac{1}{(2a)^2}$ for a rectangular waveguide where 'a' is broader dimension of rectangular waveguide. (07)
- (b) What are the primary and secondary transmission line constants?
 Derive general equation for input impedance (Z_{in}) of a transmission line of length ℓ and termination load Z_R
 (07)
- (c) Describe different types of modes based on field configuration for a rectangular wave guide (07)

[Contd...

5. Attempt any TWO:

(14)

- (a) Write short note on 8-QAM
- (b) What is a Geostationary satellite? Write a brief note.
- (c) Discus: Ground wave propagation mode for radio wave communication
- (d) Write short note on Propagation of light through optical fiber